


WEBINAR

13 April 2021 | 15:00 CEST iwa-network.org/webinars

IWA TASK FORCE ON COVID-19

IWA convened the Task Force on COVID-19, from amongst its membership, to provide the sector with an **authoritative reference point** regarding both the **relevant science** and **operational matters** relating to the SARS-CoV-2 virus.

IWA COVID-19 Task Force

Join the IWA COVID-19 Task Force Interest Group on IWA Connect!

https://iwa-connect.org/group/iwa-covid-19-task-force-interest-group/timeline

Gertjan Medema

KWR Netherlands

Tamar Kohn

Swiss Federal Institute of Technology in Lausanne Switzerland

Niko Beerenwinkel

Department of Biosystems Science and Engineering, ETH Zurich Switzerland

Giuseppina La Rosa

Istituto Superiore di Sanità Italy

Elisabetta Suffredini

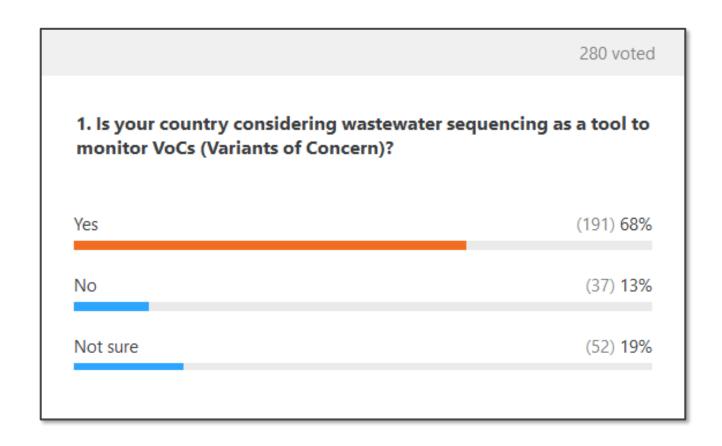
Istituto Superiore di Sanità Italy

Joan Rose
Michigan State
University
USA

AGENDA

- Introduction
 Banu Örmeci | Joan Rose
- Using wastewater to monitor the emergence of variants of concern
 Gertjan Medema
- Detection and surveillance of SARS-CoV-2 genomic variants in Swiss wastewater
 Tamar Kohn | Niko Beerenwinkel
- SARS-CoV-2 Variants of Concern in urban sewage in Italy identified by Nested RT-PCR
 Giuseppina La Rosa | Elisabetta Suffredini
- Q&A Panel Discussion

POLL 1: WASTEWATER SEQUENCING



Single choice

- 1. Is your country considering wastewater sequencing as a tool to monitor VoCs (Variants of Concern)?
- Yes
- No
- Not sure

POLL 1: WASTEWATER SEQUENCING

stowa

waterschap

Hollandse Delta

Rotterdam-Rijnmond

PARTNERS4URBANWATER

onderzoek & advies

ACKNOWLEDGEMENTS

EMC-department of Virology
EMC-department of general practice
EMC-department Medical Microbiology
EMC-department of Medical informatics
RIVM – national institute for public health
– epidemiology
GGD- Municipal Health Services
Danish Technical University

KWR water research institute
Partners4UrbanWater
STOWA Foundation for applied water
research
Waterbeheer
Waterschap Hollandse Delta
Hoogheemraadschap van Schieland
en de Krimpenerwaard
Hoogheemraadschap van Delfland
Royal Haskoning DHV
IMD
Aguon

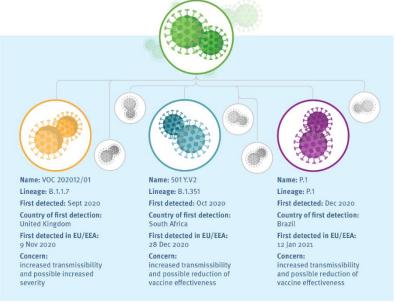
Izquierdo Lara Evelien de Schepper Goffe Elsinga Christian Carrizosa Balmont Leo Heijnen Claudia Schapendonk Patrick Bindels Johan van der Lei Margreet Vos Eelco Franz Roan Pijnacker Frederic Béen Stefanie Stubbé Richard Molenkamp Remy Schilperoort Johan post Frank Aarestrup **Ewout Fanov** Jeroen Langeveld Marion Koopmans Miranda de Graaf Gertjan Medema

Adessium Foundation

SARS-COV-2 VARIANTS OF CONCERN

Why concern?

- Impact on diagnostics (drop-out PCR)
- Increased transmissibility
- Increased disease severity
- Reduction of therapy effectiveness
- Reduction of immunity/vaccination effectiveness


Mutation of SARS-CoV-2: current variants of concern

8 February 2021

Mutations of SARS-CoV-2 that cause COVID-19 have been observed globally.

Viruses, in particular RNA viruses such as coronaviruses, constantly evolve through mutations, and while most will not have a significant impact, some mutations may provide the virus with a selective advantage such as increased transmissibility.

Such mutations are cause for concern and need to be monitored closely.

#COVID19

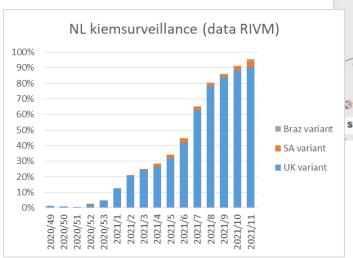
Learn more in the latest risk assessment by ECDC on SARS-CoV-2 variants of concern http://bit.ly/RRAVariants1

CONCERN

More difficult to control transmission

Tougher, longer lockdowns to reduce transmission

- Immunity/vaccination less effective
 - Reinfection and illness
 - Reinfection and transmission
 - Re-vaccination


ROLE OF SURVEILLANCE

Observe emergence/circulation of new VoC

Understand disease, transmission dynamics

Observe vaccination efficacy to VoC

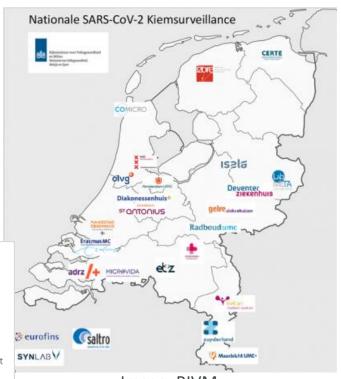


Image: RIVM

THE USE CASE OF SURVEILLANCE: TRENDS IN SARS-COV-2 VOC

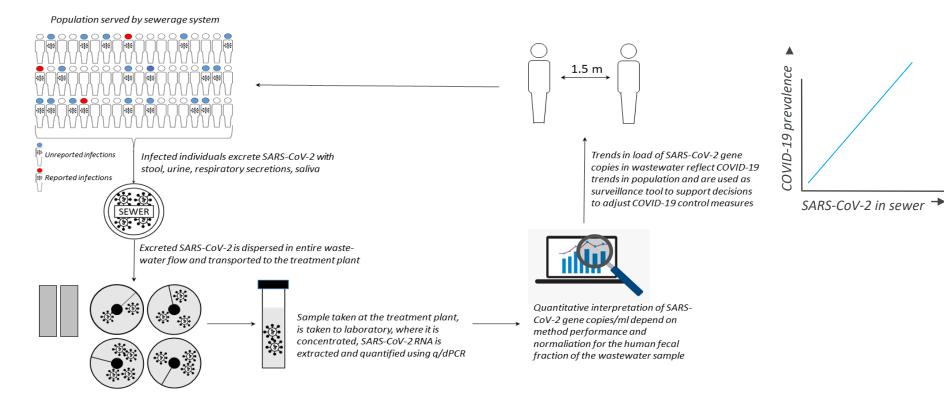
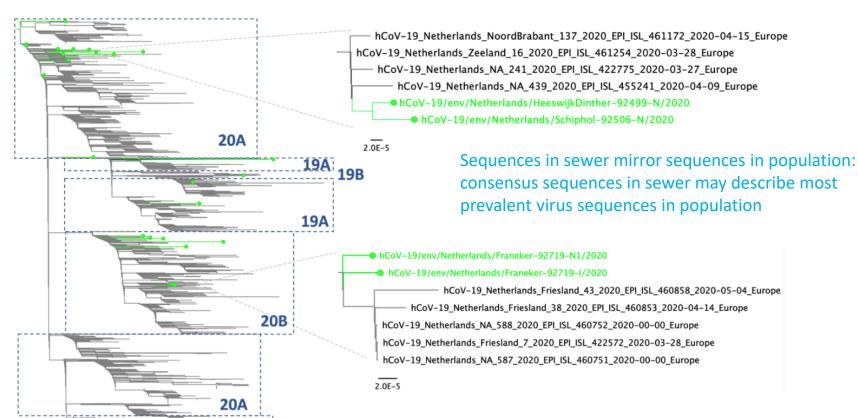


Image: Medema et al., COESH 2021

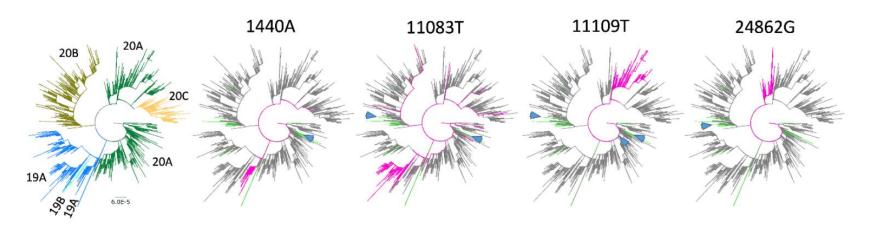
DETECTION OF VARIANTS OF CONCERN IN WASTEWATER


- VoC do not affect the ability to detect SARS-CoV-2 in current surveillance studies
- Wastewater is a mixture of variants from multiple cases: more complex methods/bioinformatics needed than for clinical samples
- Next generation sequencing of wastewater with bioinformatics to analyse SARS-CoV-2 genomic information
- Digital droplet PCR of 'signature mutations' of variants of concern

NGS FOR VARIANT CIRCULATION IN WASTEWATER

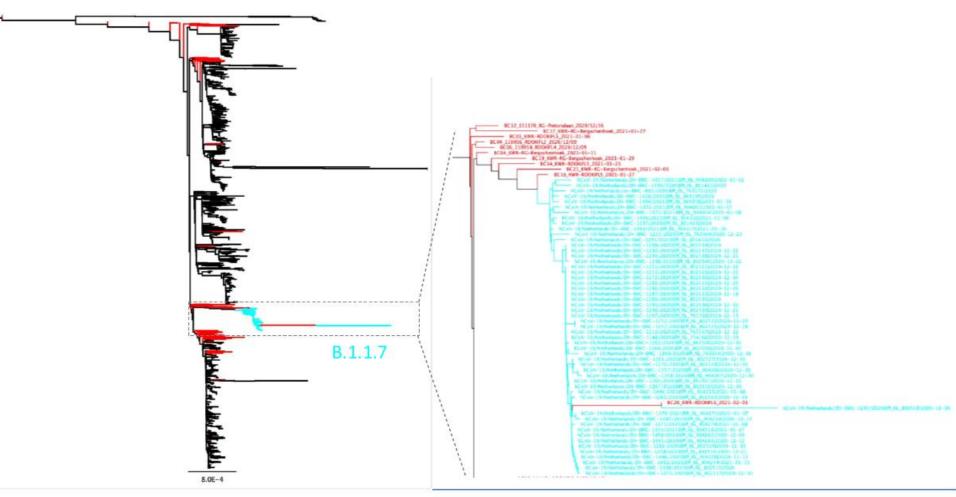
Conducted by Viroscience at Erasmus Medical Centre

Lara et al, 2021, EM INF DIS


NGS OF SARS-COV-2 MUTATIONS IN SEWAGE

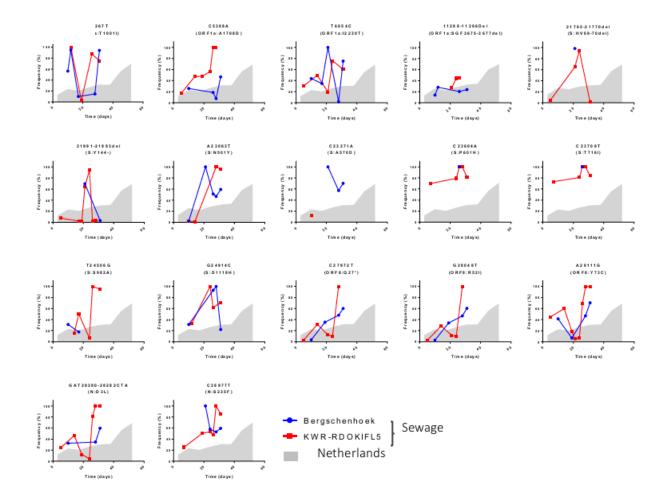
Erasmus MC

Conducted by Viroscience at Erasmus Medical Centre


zafuns

Detection of novel mutations in the virus genome that are not seen in patients

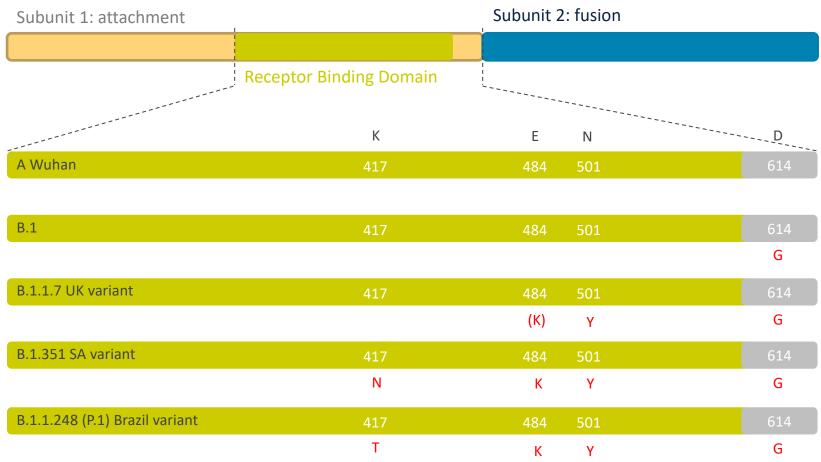
UK VARIANT IN ROTTERDAM WASTEWATER


This work is supported by European Unio"s Horizaon 2020 research and innovation programme under Grant No.874735 (VEO).

UK VARIANT MUTATIONS/DELETIONS IN ROTTERDAM WASTEWATER

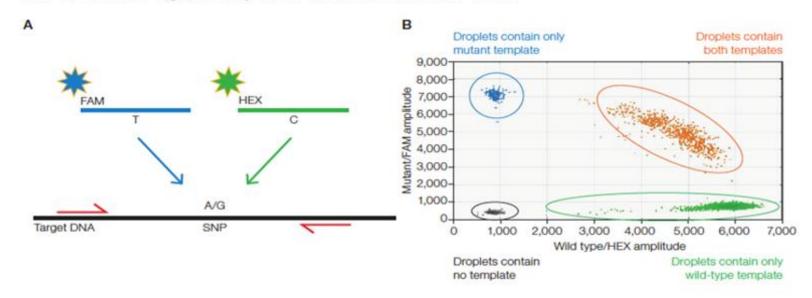
gene	nucleotide	amino acid	
ORF1ab	C3267T	T1001I	
	C5388A	A1708D	
	T6954C	12230T	
	11288-11296	SGF 3675-3677	
	deletion	deletion	
spike	21765-21770 deletion	HV 69-70 deletion Y144 deletion	
	21991-21993 deletion		
	A23063T	N501Y	
	C23271A	A570D	
	C23604A	P681H	
	C23709T	T716I	
	T24506G	S982A	
	G24914C	D1118H	
Orf8	C27972T	Q27stop	
	G28048T	R52I	
	A28111G	Y73C	
N	28280 GAT->CTA	D3L	
	C28977T	S235F	

Vanaf 01-01-2021


This work is **supported** by European Unio"s Horizaon 2020 research and innovation programme under Grant No.874735 (VEO).

Versatile Emerging Infectious Disease Observatory

VARIANTS OF CONCERN: SIGNATURE MUTATIONS



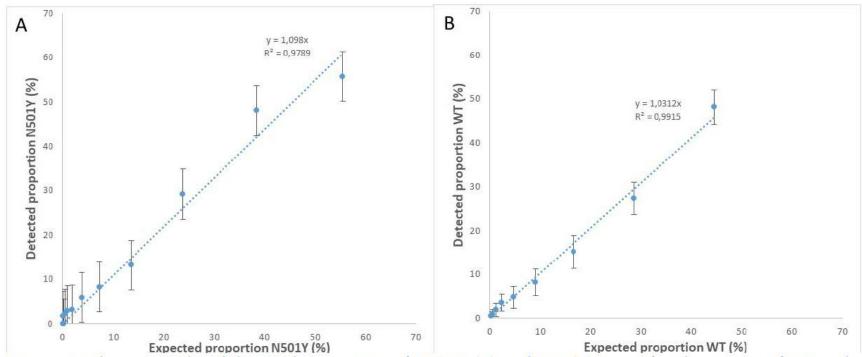
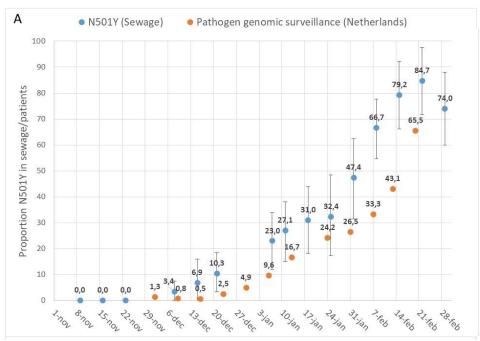
DDPCR TO DETECT (RARE) SINGLE NUCLEOTIDE MUTATION

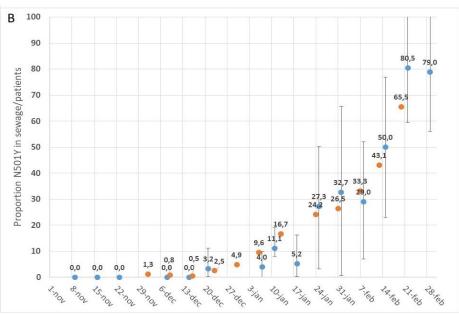
Rare Mutation Detection (RMD) refers to the detection of a sequence variant that is present at a very low frequency in a pool of wild-type background copies.

The challenge for RMD is the discrimination between two highly similar sequences, one of which is significantly more abundant than the other.

BioRad, 2021

SIMULTANEOUS DETECTION OF N501Y AND WILD TYPE WITH MULTIPLEX DDPCR


Figure 3. The expected and detected proportion of N501Y (A) and WT (B) in artificial mixtures of WT and lineage B.1.351 as detected by ddPCR.

Heijnen et al, 2021 medxriv

USE CASE: VARIANTS OF CONCERN INTRODUCTION N501Y MUTATION VS 'WILD TYPE' BY DDPCR

Amsterdam Utrecht

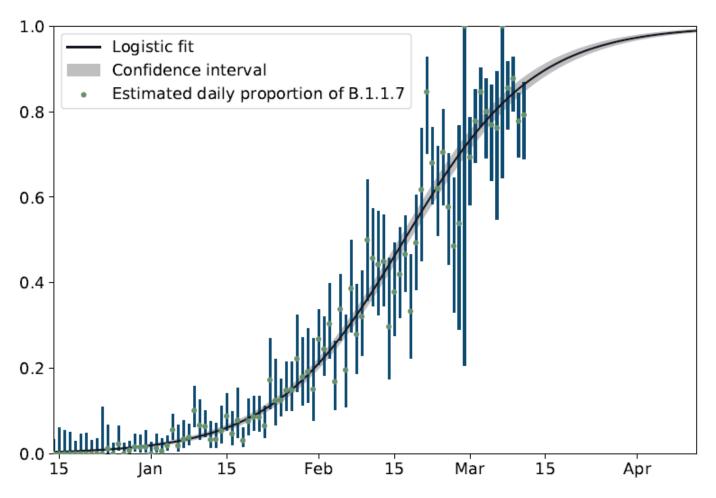
WASTEWATER SURVEILLANCE IS OF ADDED VALUE FOR VOC SURVEILLANCE

- Feasible for emergence of (signature mutations of) VoC
- Fast (with ddPCR within days, compared to 3-4 weeks for clinical surveillance with NGS)
- Efficient: on population sample, allowing high resolution surveillance
- EU HERA incubator: recommendation to Member States to apply wastewater surveillance of variants of concern

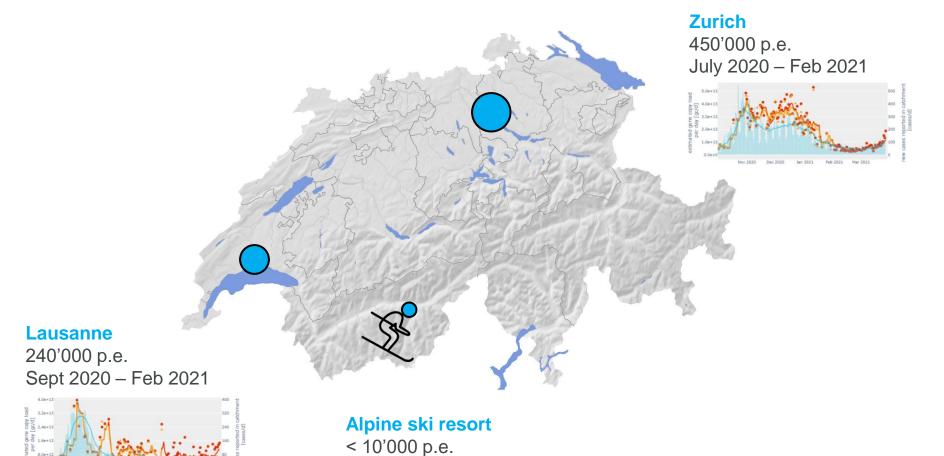
THANK YOU FOR YOUR ATTENTION

Bridging Science to Practice

Towards a Water-wise World

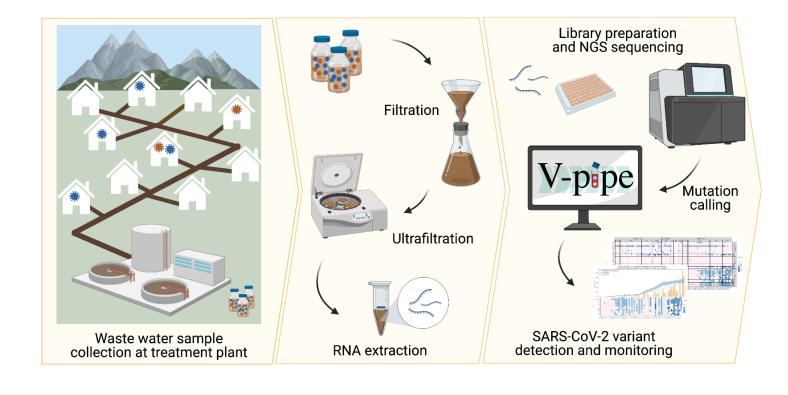


VARIANTS OF CONCERN IN SWITZERLAND



Chen et al. 2021, https://doi.org/10.1101/2021.03.05.21252520

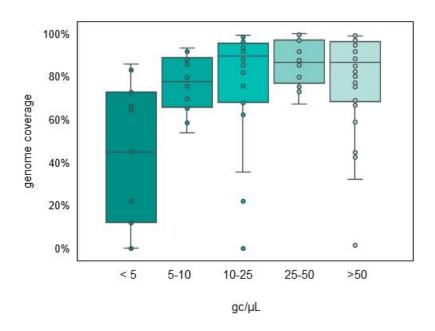
WASTEWATER SAMPLING CAMPAIGN



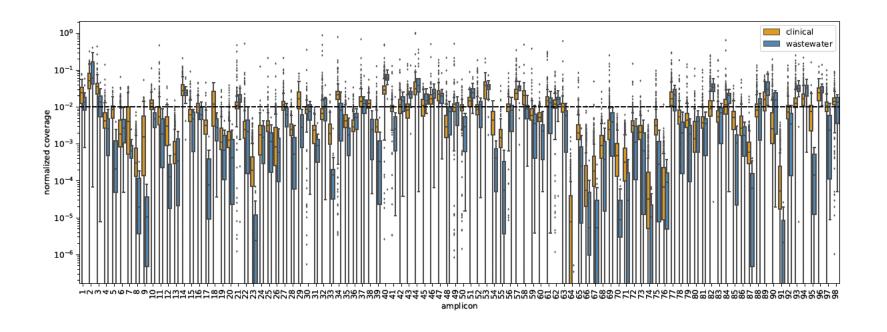
inspiring change

December 2020

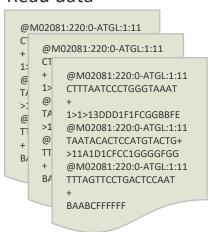
METHODOLOGY

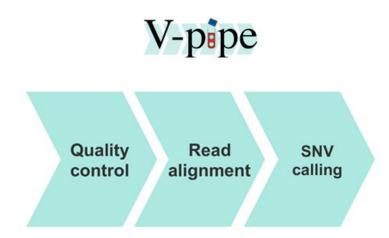


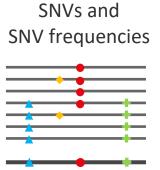
DATA QUALITY: COVERAGE


- Could sequence samples > 5 genome copies / µL extract (≈ 8 gc/mL ww) or less
- No consistent differences in normalized coverage between clinical and ww samples
- > 1 M aligned reads per sample
- Low-frequency (1/3000) mutation calling possible in most samples

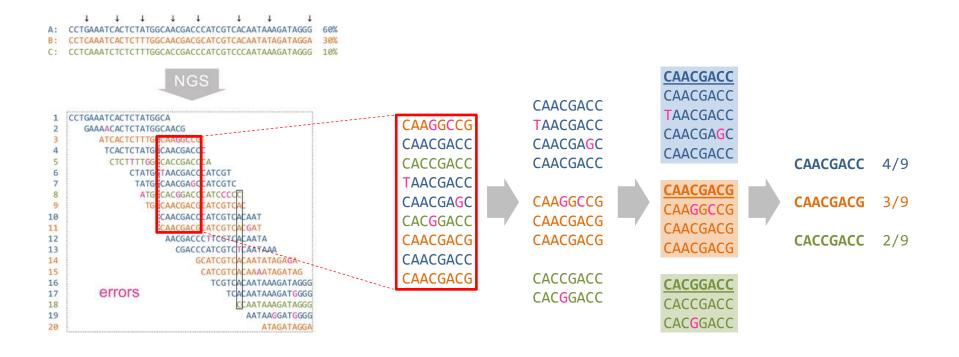
DATA QUALITY: COVERAGE

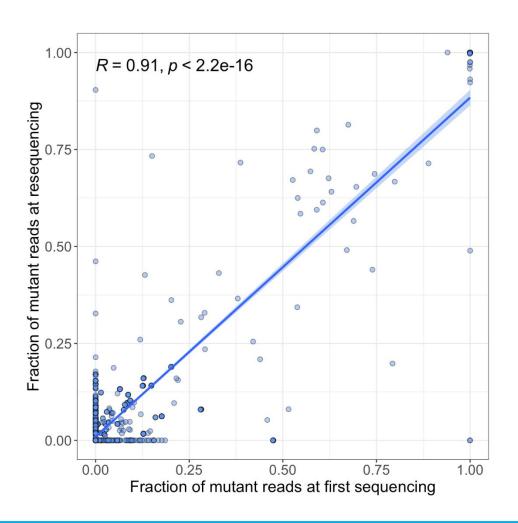

- Could sequence samples > 5 genome copies / µL extract (≈ 8 gc/mL ww) or less
- No consistent differences in normalized coverage between clinical and ww samples
- > 1 M aligned reads per sample
- Low-frequency (1/3000) mutation calling possible in most samples

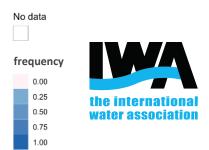



V-PIPE: A BIOINFORMATICS PIPELINE FOR MIXED VIRUS SAMPLES

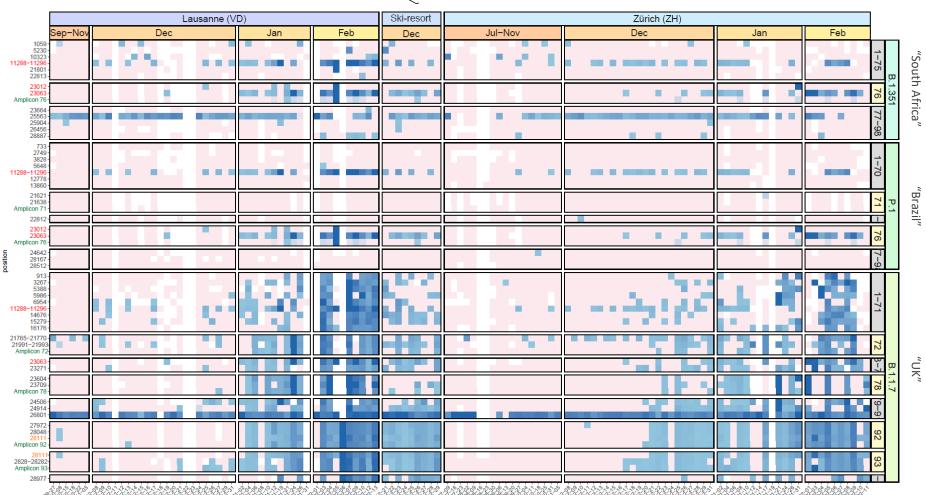
Read data



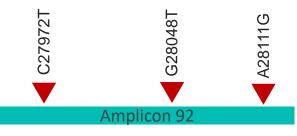

V-PIPE: MUTATION CALLING



FRACTION OF MUTANT READS



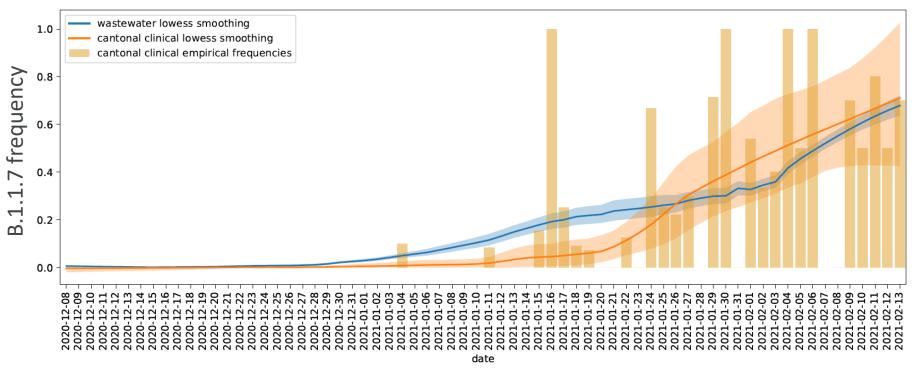
VARIANTS OF CONCERN



MUTATION CO-OCCURRENCE

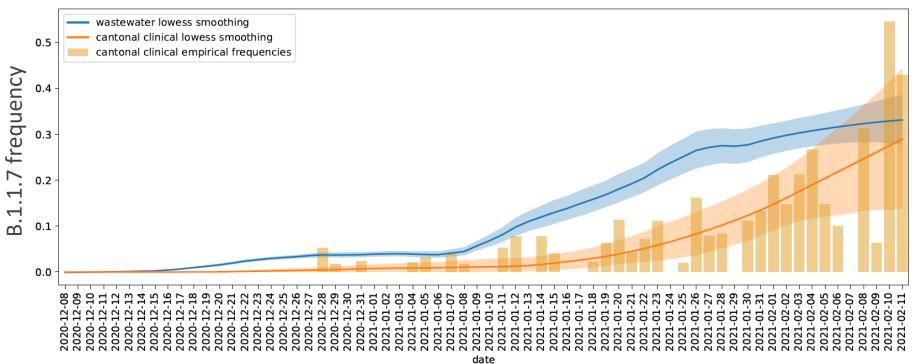
Artic v3 protocol:~ 400 bp amplicons

Paired-end 250 bp reads

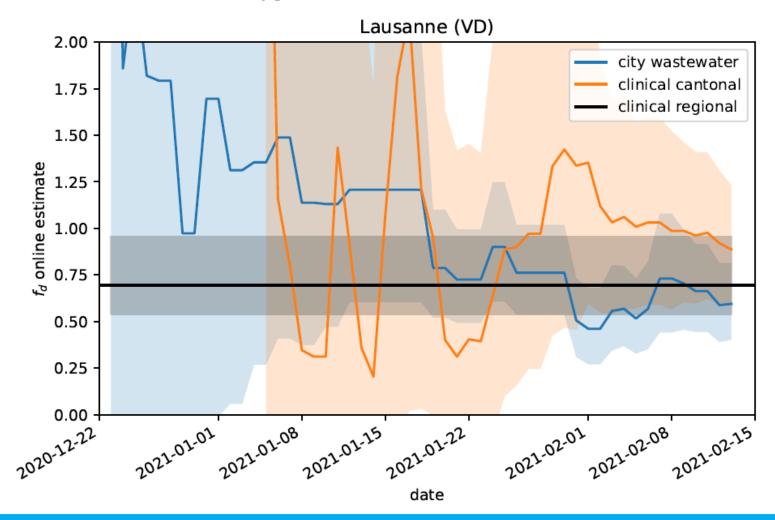

Sample	Amplicon 92 27809-28144 C27972T, G28048T, A28111G (B.1.1.7)	Amplicon 93 28105-28441 A28111G GAT28280CTA (B.1.1.7)	Amplicon 76 22822-23188 G23012A, A23063T (B.1.351)	Amplicon 77 23145-23499 A23403G (B.1)
2020-12-21 Ski resort	514 / 3689 13.93%	0 / 20672	0 / 165	36208 / 36209 100.00%
2020-12-21 Lausanne	0 / 10	93 / 3393 2.74%	0/0	10 / 10 100.00%
2020-12-14 Lausanne	0 / 4858	816 / 35838 2.28%	0 / 177	20280 / 20284 99.98%
2020-12-11 Lausanne	154 / 13504 1.14%	0 / 82020	0 / 802	93625 / 93659 99.96%
2020-12-09 Lausanne	5 / 457 1.09%	0 / 40213	0 / 76	12846 / 12847 99.99%
Patient sample 410256 (B.1.351 positive)	0 / 2601	0 / 3526	8 / 8 100.00%	6570 / 6574 99.94%
Patient sample 410279 (B.1.351 positive)	0 / 20487	0 / 16822	156 / 156 100.00%	32633 / 32699 99.80%
Patient sample 420389 (B.1.1.7 positive)	389 / 389 100.00%	1498 / 1501 99.80%	0/3	3184 / 3184 100.00%
Patient sample 420394 (B.1.1.7 positive)	207 / 207 100.00%	739 / 742 99.60%	0/7	2067 / 2068 99.95%

Jahn et al. 2021, https://doi.org/10.1101/2021.01.08.21249379

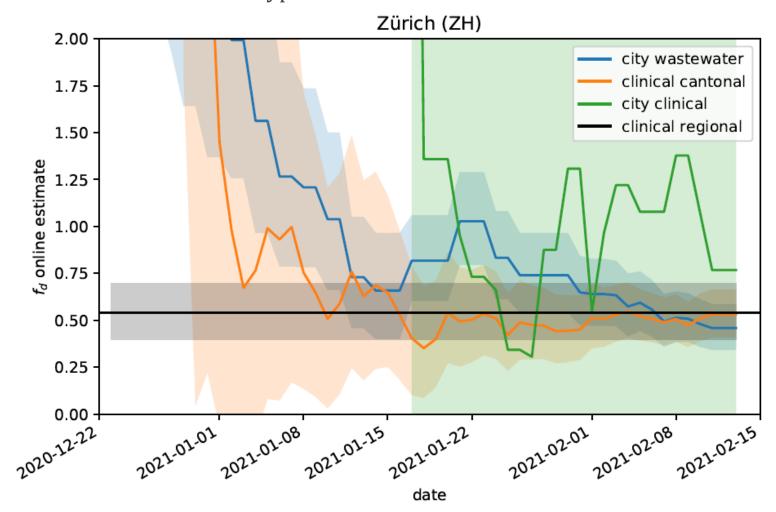
WASTEWATER VS. CLINICAL SAMPLES



WASTEWATER VS. CLINICAL SAMPLES



TRANSMISSION FITNESS ONLINE ESTIMATE

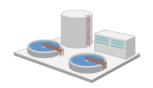

$$R_{\rm B.1.1.7} = (1 + f_d) R_{\rm wild \ type}$$

TRANSMISSION FITNESS ONLINE ESTIMATE

$$R_{\rm B.1.1.7} = (1 + f_d) R_{\rm wild \ type}$$

THANKS TO...

EPFL

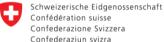

Federica Cariti Xavier Fernandez-Cassi Alex Tuñas Corzón

ETH zürich **D**BSSE

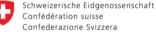
Catharine Aquino Chaoran Chen **David Dreifuss** Lara Furhmann Kim Philipp Jablonski Katharina Jahn Tanja Stadler Ivan Topolsky

eawag

Carola Bänziger Lea Caduff **Pravin Ganesandamoorthy** Tim Julian Anina Kull Christoph Ort Elyse Stachler



EPFL



FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

Federal Office for the Environment (FEON)

Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Office of Public Health (FOPH)

POLL 2: MONITORING CHALLENGES

Multiple choice

- 1. What are the main challenges that may prevent the implementation of a sequencing routine for VoC (Variant of Concern) monitoring?
- Low quality of sequencing data
- Lack of sequencing capacity
- High cost
- Lack of trained bioinformatics personnel

Other

POLL 2: MONITORING CHALLENGES

	265 voted
1. What are the main challenges that may primplementation of a sequencing routine for Concern) monitoring? (Multiple choice)	
Low quality of sequencing data	(59/265) 22%
Lack of sequencing capacity	(79/265) 30%
High cost	(116/265) 44%
Lack of trained bioinformatics personnel	(137/265) 52%
Other	(25/265) 9%

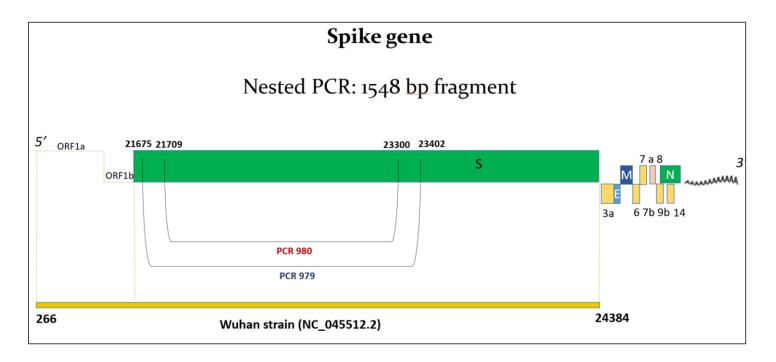
20E (EU1)

SARS-CoV-2 Variants of Concern in urban sewage in Italy identified by Nested RT-PCR


GIUSEPPINA LA ROSA & ELISABETTA SUFFREDINI ISTITUTO SUPERIORE DI SANITÀ, ITALY

20H/501Y.V2

19A


20

AIM

 Develop a rapid screening method for variants of concern in clinical and environmental samples: nested RT-PCR + Sanger sequencing

The amplified fragment codes for 515 amino acids of the spike protein (positions 58-573)

MUTATIONS DETECTABLE BY THE NEWLY DESIGNED PCR ASSAY

	Variant	First detected								LONG	PCR	ID 9	80 (a)							
3	B.1.1.7 (501Y.V1)	UK	H69 del	V70 del			Y144 del												N501Y	A570D
ز ا ا	B.1.351 (501.V2)	South Africa			D80A					D215G		L242H	A243/4 /5del	R246I	K417N			E484K	N501Y	
	P.1 (501Y.V3)	Brazil				D138Y			R190S						K417T			E484K	N501Y	
	B.1.177 (20E.EU1)	Spain									A222V									
	B.1.429 (20C/S:45 2R)	US- California						W152C								L452R				
	B.1.1.298 (Mink Cluster V)	Denmark	H69 del	V70 del													Y453F			

B.1.525	Nigeria	A67V	H69 del	V70 del		Y144 del							E484K	
B.1.36	India										N440K			
R.1	Japan						W152L						E484K	

a) Amino acid position 58 to 573 of the spike protein (primers excluded)

IN-SILICO STUDY: GISAID

Are specific **combinations of mutations** sufficiently informative to screen for specific SARS-CoV-2 variants?

Lineage GR B.1.1.7 (UK)

Mutations detectable in the long fragment:

HV69-70del, Y144del, N501Y and A570D

- Among the complete genomes belonging to **this** lineage **any combination of two mutations** was present at a frequency ranging from 97.6% to 99.4%.
- ii. All of the complete genomes displaying at least two of the aforementioned mutations belonged to the B.1.1.7 lineage.

 Last run:
 14.01.2021 h 23.30-23.40

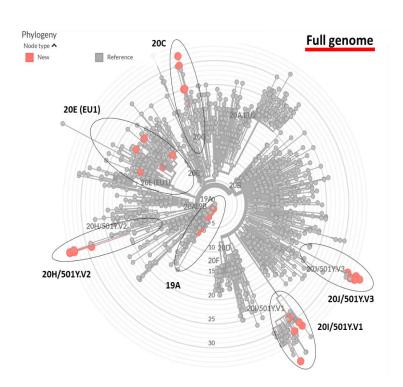
 tot GISAID CoV-2 complete genome seq
 371470

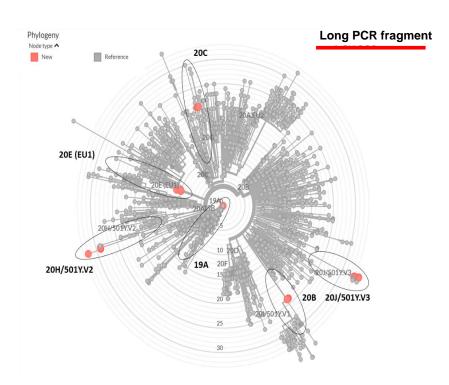
 tot GR B.1.1.7 complete genome seq
 17798

Complete genomes classified as GR B.1.1.7 that display the following combinations of mutations

H69del	Y144del	N501Y	A570D	n°	n°/GR B.1.1.7
1	1	1	1	17353	97,50%
1	1	1	0	17355	97,51%
0	1	1	1	17372	97,61%
1	0	1	1	17510	98,38%
1	1	0	1	17371	97,60%
1	1	0	0	17374	97,62%
0	0	1	1	17691	99,40%
1	0	0	1	17529	98,49%
0	1	1	0	17374	97,62%
1	0	1	0	17517	98,42%
0	1	0	1	17390	97,71%
1	0	0	0	17537	98,53%
0	1	0	0	17393	97,72%
0	0	1	0	17703	99,47%
0	0	0	1	17829	100,17%
0	0	0	0	17798	100,00%

Complete genomes with the following combinations of mutations that are classified as GR B.1.1.7


H69del	Y144del	N501Y	A570D	n°	GR B.1.1.7	GR B.1.1.7/n°
1	1	1	1	17355	17355	100,00%
1	1	1	0	17357	17357	100,00%
0	1	1	1	17374	17374	100,00%
1	0	1	1	17512	17512	100,00%
1	1	0	1	17373	17373	100,00%
1	1	0	0	17376	17376	100,00%
0	0	1	1	17693	17693	100,00%
1	0	0	1	17531	17531	100,00%
0	1	1	0	17376	17376	100,00%
1	0	1	0	17519	17519	100,00%
0	1	0	1	17392	17392	100,00%
1	0	0	0	24166	17537	72,57%
0	1	0	0	17908	17395	97,14%
0	0	1	0	18751	17705	94,42%
0	0	0	1	17833	17831	99,99%
0	0	0	0	17798	17798	100,00%


IN-SILICO STUDY: NEXTCLADE

5 GISAID strains for each of the the following clades/variants:

Wuhan (19A), UK (501Y.V1), South Africa (501Y.V2), Brazil (501Y.V3), Spain (20E.EU1), California (CAL.20C) for a total of 30 sequences.

All of the variants were correctly assigned on the sole basis of the genome region amplified by the long PCR.

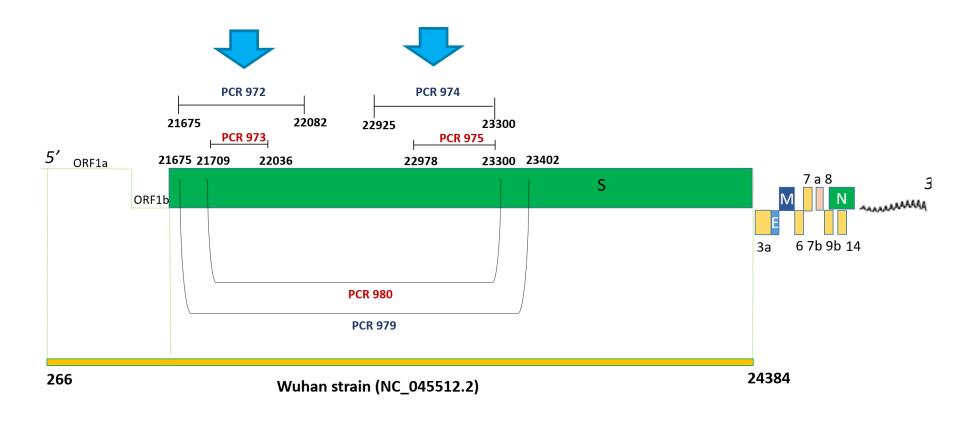
PRIMER VALIDATION ON CLINICAL SAMPLES

- 7 SARS-CoV-2 RNA samples originating from nasopharyngeal swabs, collected in Apulia and Basilicata (August-December 2020)
 - isolated on Vero E6 cells
 - characterized by WGS as 20A, 20B, 20E.EU1 (Spanish variant), and 20I/501Y.V1 (UK variant),
- 24 RNA samples originating from nasopharyngeal swabs collected in Apulia and Basilicata (November-January 2021) that tested positive for SARS-CoV-2 by real-time RT-PCR

not characterized

PRIMER VALIDATION ON CLINICAL SAMPLES

Sample	Identification based on WGS	Mutation map	GISAID blast
swab_1	-	A222V	GV_B.1.177
swab_2	-	S477N	GH_B.1.160
swab_3	-	S477N	GH_B.1.160
swab_4	-	A222V	GV_ B.1.177
swab_5	-	A222V	GV_ B.1.177
swab_6	-	A222V	GV_ B.1.177
swab_7	-	A222V	GV_ B.1.177
swab_8	-	A222V	GV_ B.1.177
swab_9	-	A222V	GV_ B.1.177
swab_10	-	A222V	GV_ B.1.177
swab_11	-	A222V	GV_ B.1.177
swab_12	-	A222V	GV_ B.1.177
swab_13	-	S477N	GH_B.1.160
swab_14	-	-	Not assignable
swab_15	-	-	Not assignable
swab_16	-	S477N	GH_B.1.160
swab_17	-	A222V	GV_ B.1.177
swab_18	-	A222V, A262S, P272L	GV_ B.1.177
swab_19	-	S98F	G_B.1.221
swab_20	-	A222V	GV_ B.1.177
swab_21	-	n.d.	n.d.
swab_22	-	n.d.	n.d.
swab_23	-	S477N	GH_B.1.160
swab_24	-	A222V, A411S	GV_B.1.177
swab_25	20A	-	Not assignable
swab_26	20A	D215H	Not assignable
swab_27	20B	-	Not assignable
swab_28	20B	-	Not assignable
swab_29	GV_ B.1.177	A222V	GV_ B.1.177
swab_30	GV_ B.1.177	A222V	GV_ B.1.177
swab_31	GR B.1.1.7	H69del, V70del, Y144del, N501Y, A570D	GR B.1.1.7


The Spanish variant was found in 14/24 uncharacterized swabs (mutation A222V alone or combined with A262S and P272L in one sample or with A411S in another sample)

The long assay allowed the correct identification of the UK and the Spanish variants present in the panel of previously characterized samples.

DESIGN OF SHORT ASSAYS TO BE USED IN SEWAGE SAMPLES

Two additional short nested RT-PCRs targeting portions of the region spanned by the long assay

DESIGN OF SHORT ASSAYS TO BE USED IN SEWAGE SAMPLES

Mutations indicative of the main SARS-CoV-2 VOCs detectable by the newly designed short nested PCR assays.

Variant		Amino acid position in the S gene	
20I/501Y.V1 (GR, B.1.1.7), UK	H69 V70 Y144 del del del		N501Y A570D
20H/501Y.V2 (GH, B.1.351), SA	D8o A	D215G L242H A243 L244 H245 R246I K417N del del del	E484K N501Y
20J/501Y.V3 (GR, P1), Brazil	D138Y	R190S K417T	E484K N501Y
Mink clust. V (GR,B.1.1.298), Denmark	H69 V 7 0 del del	Y ₄₅₃ F	
(G, B.1.525), Nigeria	A67 H69 V70 Y144 V del del del		E484K
	SHORT PCR 973 (aa 58-150)		SHORT PCR 975 (aa 480-573)
		LONG PCR 980 (aa. 58-573 of the spike protein)	

TESTING THE LONG AND SHORT ASSAYS ON SEWAGE SAMPLES

Environmental samples tested with the three assays:

 20 SARS-CoV-2 positive sewage samples Rome (Sept-Dec 2020)

2. 8 sewage samples

Guardiagrele, Abruzzo (21-25 January 2021) – where a cluster of clinical cases of the UK variant had been reported

3. 6 sewage samples

Perugia, Umbria (5 - 8 February 2021) – where clinical cases of the UK variant and of the Brazilian variant had been identified

Aim: to verify whether the S mutations associated with these variants were detectable in the local sewage using the newly designed assays.

TESTING THE LONG AND SHORT ASSAYS ON SEWAGE SAMPLES

20 SARS-CoV-2 positive sewage samples Rome (Sept-Dec 2020)

None of the samples collected in Rome displayed mutations indicative of VOCs

2. 8 sewage samples

Guardiagrele, Abruzzo (21-25 January 2021) – where a cluster of clinical cases of the UK variant had been reported

Mutations characteristic of the Spanish variant were detected, but not the UK variant

3. 6 sewage samples

Perugia, Umbria (5 - 8 February 2021) – where clinical cases of the UK variant and of the Brazilian variant had been identified

Mutations characteristic of the UK, and Brazilian variants were detected

TESTING THE LONG AND SHORT ASSAYS IN SEWAGE SAMPLES

Sample ID	Sampling location		Long-PCR ID 980		ort-PCR 973		nort-PCR ID 975	
		Result	Mutations	Result	Mutations	Result	Mutations	
3863		+	A222V	+	none	+	none	Spanish mutation,
3865	Abruzzo	+	A222V	+	none	-		detected by long PCR
3944		-	-	+	D138Y	+	E484K, N501Y	
3945		-	-	+	D138Y	+	E484K, N501Y	
3947	Umbria	+	D138Y, R190S, K417T, E484K,	+	D138Y	+	E484K, N501Y	Brazilian mutations, detected by long + bosensert PCRs
			N501Y					UK mutations, detecte
3949		-	-	+	E96G	+	N501Y, A570D	by only one of the sho PCRs

Sequence did not show the expected mutations (HV69-70del and Y144del) of the UK variant

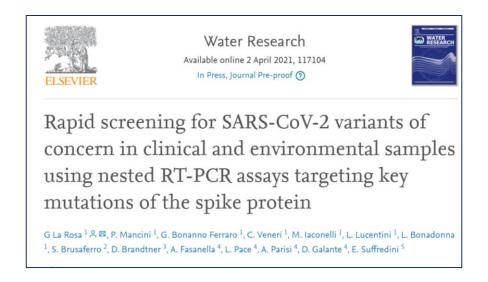
Sample collected on 6 February 2021 from a WTP serving the outskirts of Perugia, including the local hospital, which had reportedly been experiencing a nosocomial cluster of the Brazilian variant

CONCLUSIONS

We were able to detect key mutations of the Spanish, Brazilian and UK variants in urban wastewaters in Italy.

Advantages:

- Rapidly identifies VOCs in the catchment of any WTP to identify areas where clinical surveillance and/or targeted preventive intervention is required.
- ✓ Can be performed routinely at a low cost, easy to interpret.
- ✓ In clinical settings, can be used as a rapid screening test to select clinically relevant specimens for WGS.


Disadvantages:

- ✓ In environmental samples, Sanger sequencing may underestimate some, possibly less prevalent, strains.
- ✓ In environmental samples, use of 2 short assays may result in each of the tests amplifying a different target.

WORK IN PROGRESS

- Optimize the long PCR for environmental samples
- Combine the protocol with NGS or Long-read sequencing (e.g. Oxford Nanopore sequencing) for a more in-depth analysis of sequences.

General Q&A Discussion

GERTJAN MEDEMA, TAMAR KOHN, NIKO BEERENWINKEL, GIUSEPPINA LA ROSA, ELISABETTA SUFFREDINI

(MODERATED BY JOAN ROSE)

Join our network of water professionals!

IWA brings professionals from many disciplines together to accelerate the science, innovation and practice that can make a difference in addressing water challenges.

Use code WEB21RECRUIT for a 20% discount off new membership.

Join before 31 December 2021 at: www.iwa-connect.org

Join us at the next IWA webinar:

Al-empowered Asset Management

20 April 2021 | 15:00 CEST

Learn more at: www.iwa-network.org/webinars