

Earth Observation technologies for water quality management

WEBINAR

21 July 2021 | 14:00 BST iwa-network.org/webinars

WEBINAR INFORMATION

- This webinar will be recorded and made available "on-demand" on the IWA website.
- Following the webinar, you will be sent a post-webinar email with the on-demand recording, presentation slides, and other information.

 'Chat' box: please use this for general requests and for interactive activities. 'Q&A' box: please use this to send questions to the panelists.
 (We will answer these during the discussions)

Please Note: Attendees' microphones are muted. We cannot respond to 'Raise Hand'.

PANELISTS

Dr Erin Urquhart
PACE Applications
Coordinator at
NASA GSFC,
USA

Steven Greb
Researcher at
University of
WisconsinMadison,
Director of
GEO AquaWatch,
USA

Apostolos Tzimas,
Managing
Director at EMVIS
Consultant
Engineers,
PrimeWater
project leader,
Greece

Maria Dessena,
Geologist at
ENAS,
Italy
Environmental
Protection
Agency (EPA),
USA

AGENDA

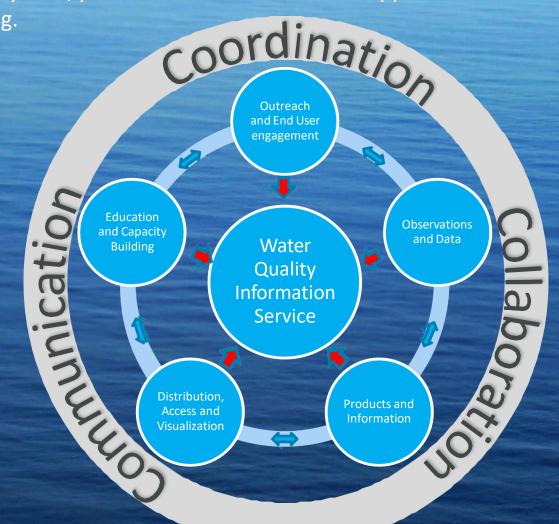
- Welcome, housekeeping rules and panelists introduction *Dr Erin Urquhart*
- The GEO AquaWatch initiative Building Confidence in EO Water Quality Data
 Steven Greb
- New approaches from PrimeWater being developed to connect EO to end users Apostolos Tzimas
- Case study: EO in practice, the point of view of a water utility Maria Antonietta Dessena
- Use of EO in practice for water management Blake Schaeffer
- Panel discussion with questions from audience

Closing remarks

The GEO AquaWatch initiative Building Confidence in EO Water Quality Data

STEVEN GREB

UNIVERSITY OF WISCONSIN-MADISON



AquaWatchThe GEO Water Quality Community of Practice

AquaWatch aims to develop and build the global capacity and utility of Earth Observation-derived water quality data, products and information to support water resources management

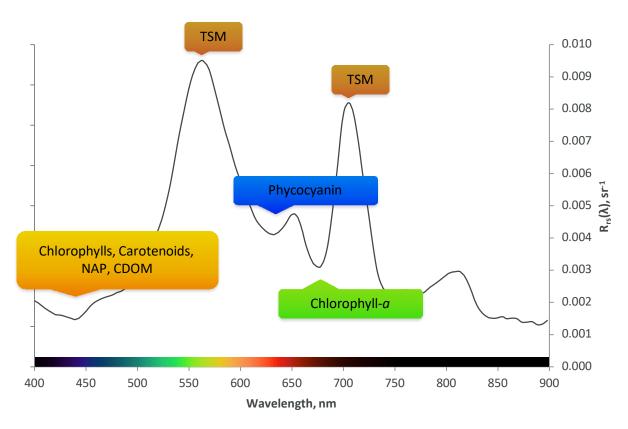
REMOTE SENSING OF FRESHWATERS

Scattering of sunlight within atmosphere

Reflection
Bottom of skylight
reflectance at surface

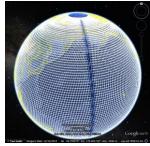
Emergent flux (water-leaving radiance) Reflection of direct solar beam at surface

Upward scattering of sunlight within water

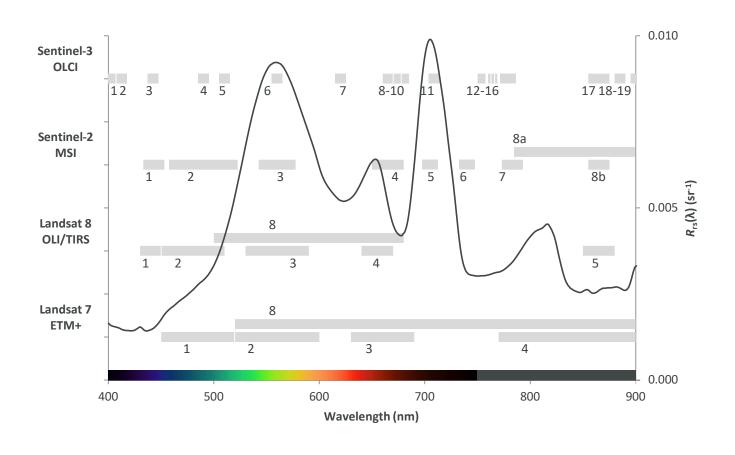

Phytoplankton
Suspended Solids
Colored DOC

Credit:New York Times Image by Wade Fairley/WCS

Photo by Steve Rohrs



COMPARISON OF EARTH OBSERVATION SENSORS SUITABLE FOR WATER QUALITY ASSESSMENT WITH PUBLIC ACCESS DATA POLICY



Credit: ESA/Pierre Carril

Google Earth Image

ADVANTAGES AND DISADVANTAGES

Advantages of the remote sensing of water quality

- Water quality data with <u>a high spatial</u> <u>and temporal resolution</u> for multiple water bodies at a time
- Affordable
- Historical data for studies of trends in water quality
- Near real-time data for current information
- Accuracy continuing to improve

Disadvantages of the remote sensing of water quality

- Optically complex conditions found in lakes
- Potential interference from the lake bottom in shallow lakes
- Clouds!
- Dynamic changes in water quality
- Limited number of water quality parameters
- Calibration and validation of models typically requires the collection of ground truth data

Examples of Current Data and Product Sources

EODATABEE

From Earth Observation data to valuable information

OUR SERVICES

GET STARTED

OUR SERVICES

APPLICATIONS

GET STARTED

OUR SERVICES

APPLICATIONS

GET STARTED

OUR SERVICES

OUR SERVICES

APPLICATIONS

GET STARTED

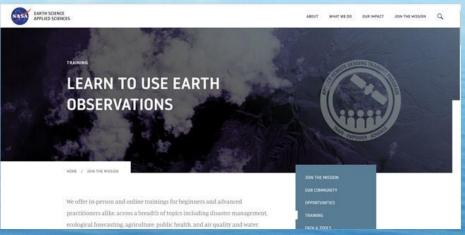
OUR SERVICES

APPLICATIONS

GET STARTED

http://sdg6-hydrology-tep.eu/

https://eodatabee.eu/



https://search.earthdata.nasa.gov/search

https://land.copernicus.eu/

Training Resources

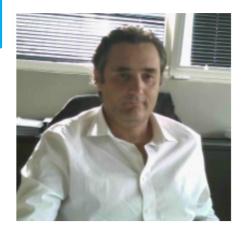
https://appliedsciences.nasa.gov/what-we-do/capacity-building/arset

https://www.copernicus.eu/en/opportunities/education/copernicus-academy

Contact Information

If interested in joining a working group or getting involved in AquaWatch, please contact the AquaWatch Secretariat (Merrie-Beth Neely) at info@geoaquawatch.org

Or contact Steven Greb, AquaWatch Director at the University of Wisconsin at srgreb@geoaquawatch.org

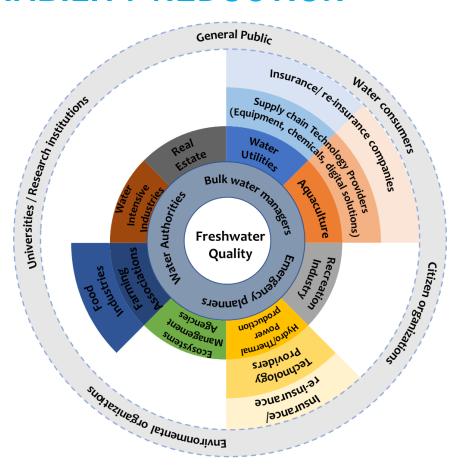


New approaches from PrimeWater being developed to connect EO to end users

APOSTOLOS TZIMAS

EMVIS MANAGING DIRECTOR
PRIMEWATER PROJECT COORDINATOR

PRIMEWATER IN A GLANCE


WATER QUALITY HAZARDS EXPOSURE AND VULNERABILITY REDUCTION

Proactive management of water related risks

What is the rational for acting as early as possible

What is the optimum lead time in decision making

Develop reliable, predictive and prescriptive services for Water Quality Hazards exposure and vulnerability reduction in the Water Sector

- Water Quality Forecasts as a Service
- Forecasts based Early Warning System for Algae Bloom
- Predictive Reservoir Water
 Management (e.g Blending among interconnected reservoirs)
- Water Abstraction Optimization based on forecasted Water Quality

Demonstrate EO potential for supporting local-scale operations in the water industry

Cross-cutting research and integration with hydroecological models for generating skilled Water Quality forecasts

The rational for being proactive COST OF INACTION AND

OPPORTUNITIES

Predictive management of a utility's risks

Risk management is critical in proactively determining and mitigating issues. Mitigating risks in a planned manner is less expensive than reacting to a major system failure

2.0B CNY

(300 M \$US)

OFWAT Guaranteed Standards Scheme , 2017

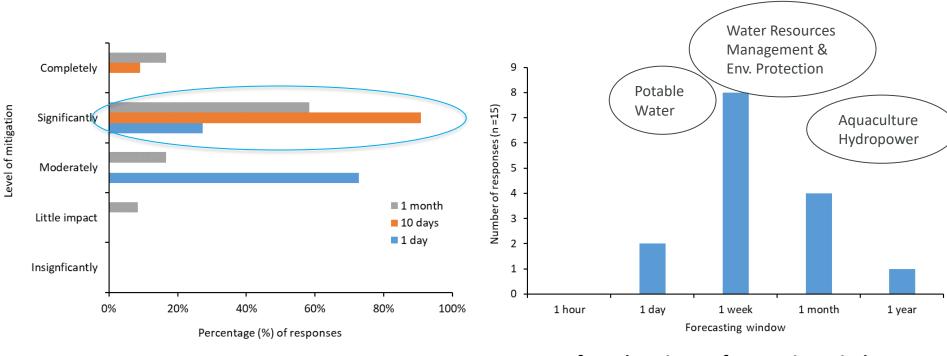
0.5м .1 M Peop 00.000

Lake Erie, 2009

...Not to mention Tourism, Fisheries, on carbon Aquaculture, Property values, Livestock, **Public Health**

Blending source water Algaecide Flocculants application Water circulation (aeration or mixing) SUS per **Increased treatment costs** and efforts Increased treatment cost for removing microcystis Murray River, 2010-11 Lake Erie, 2009, 2014 Toledo spending

Songhuajiang River Pollution Accident, 2005 China


Water supply disruption

M peop

Boston, 2010 - Main Break

THE OPTIMUM LEAD TIME IN DECISION MAKING

Extent that an Action Plan, when forecasting services are available can mitigate water related issues

Preferred optimum forecasting window across sectors

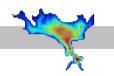
Results from PrimeWater 1st Multi-User Panel Workshop (21 participants, 15 responses)

DELIVERING HIGH RELIABILITY WATER QUALITY FORECASTS FOR THE WATER INDUSTRY

Hydrological Modelling.

<u>Attributes:</u> **River discharges** in upstream catchments, **Diffuse loads** (e.g. sediments, nitrogen, phosphorus).

Earth Observations.


<u>Satellite imagery</u>: **Sentinel 2A/B** and **Landsat 7/8**, **PRISMA**)

<u>Attributes</u>: **Turbidity**, **chlorophyll-a**, surface water **temperature**,.

Data Assimilation.

Automatic real-time **assimilation of EO** to **improve forecasting skill**, (Ensemble Kalman Filter, 4dVAR, Weighted Average).

Hydrodynamic Modelling.

Attributes: Velocity field and circulation pattern of the reservoir.

Water Quality Modelling.

Attributes: Algae growth, nutrients, sediments and dissolved oxygen.

Operational Forecast production.

PrimeWater service line **integrates** operationally multiple scientific components & produces **short term forecasts** (up to 10 days) of **hydrological and ecological parameters** of the reservoir,

Machine Learning Models.

Machine Learning algorithms (random Forests, Gaussian Process Regression, Quantile regression forests) are used for **Water Quality predictions**, **assessment of prediction uncertainty** and systematic **errors correction** in forecasting systems,

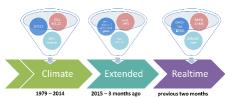
<u>Data used</u>: **Satellite imagery**, **in situ monitoring** data, **meteorological** and **hydrological** forecasts

...for generating real time, short to medium range water quantity and quality forecasts for reservoirs.

THE SCIENCE BEHIND THE SERVICES

Advancing the skill of hydrological forecasting

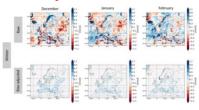
Continental and global hydrological forecasting



E-HYPE model & WW-HYPE

Semi-distributed, process based model. Uses ECMWF meteorological forcing and provides 10-days forecasts of:

• Daily river discharges • Sediment and Nutrient (N, P) loads

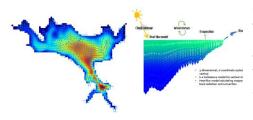

Meteorological forcing

SMHI's operational global forcing dataset

- 0.5 degrees resolution
- 3-hrs frequency for 'Climate' and 'Extended'
- 6-hrs frequency for 'Realtime'

Bias adjustment

SMHI's operational global forcing dataset


• Bias of SEAS5 precip. vs HydroGFD • Bias-adjustment based on quantile-quantile mapping approach

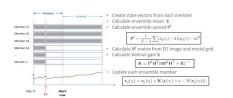
THE SCIENCE BEHIND THE SERVICES

Advancing the skill of process-based WQ forecasting

Operational coupled Hydrodynamic and Water Quality forecasting

Capture the motion of water and calculate the forces acting on it using **Delft3D-FLOW**.

- water velocities mixing and turbulence water temperature and densities. Delft3D-WAQ uses 50 ecological processes and 16 state variables to capture the dynamics of:
- algae populations
 dissolved nutrients
 particulate matter
 dissolved oxygen


Efficient calibration

Metamodeling approach to replicate the response of high fidelity models with reduced computational effort

Improve forecasting skill through Sequential and Variational Data Assimilation techniques

Automatic real-time assimilation of EO and

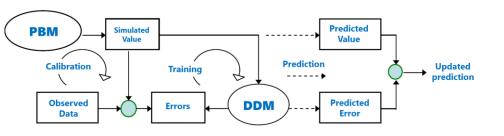
in-situ monitoring to correct initialization state of ecological modelling and improve forecasting skill,

Benchmarking various techniques (Ensemble Kalman Filter, 4dVAR) in terms of skill improvement and computational effort.

Uncertainty estimation

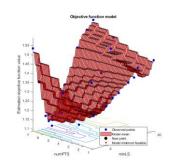
Quantify uncertainty using ensemble modelling

THE SCIENCE BEHIND THE SERVICES



Advance the skill of process-based models through a model fusion approach

An error-correcting framework


Systematic might errors contain useful information

· Train data-driven algorithms to recover some of the missing information and correct process-based predictions

Exploiting the wealth of satellite-derived data

Development of **credible** data-driven models

Training Random Forests and Gaussian Process Regression using ...

- EO-derived water quality
- Meteorological forecasting
- Hydrological forecasting

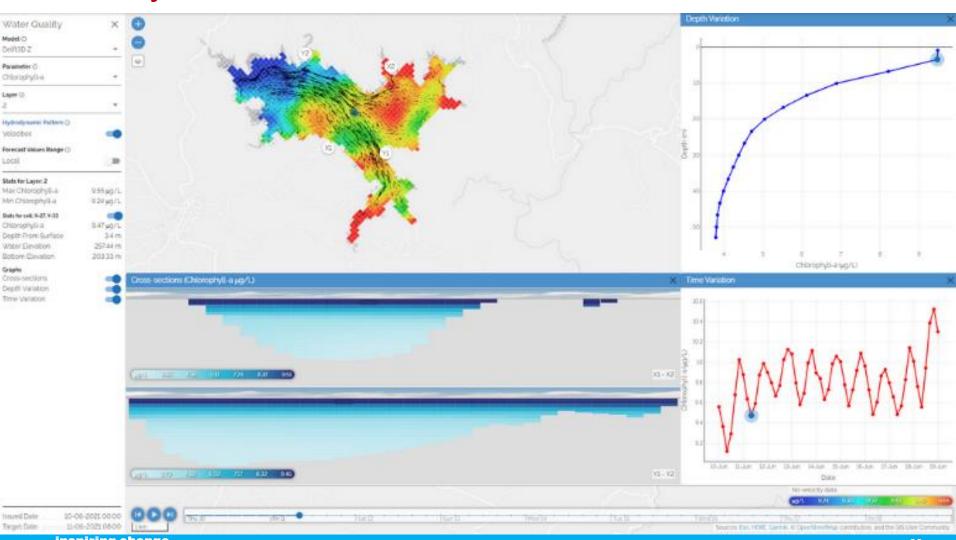
Assessment of prediction uncertainty

give information about the spread of the predictions using ...

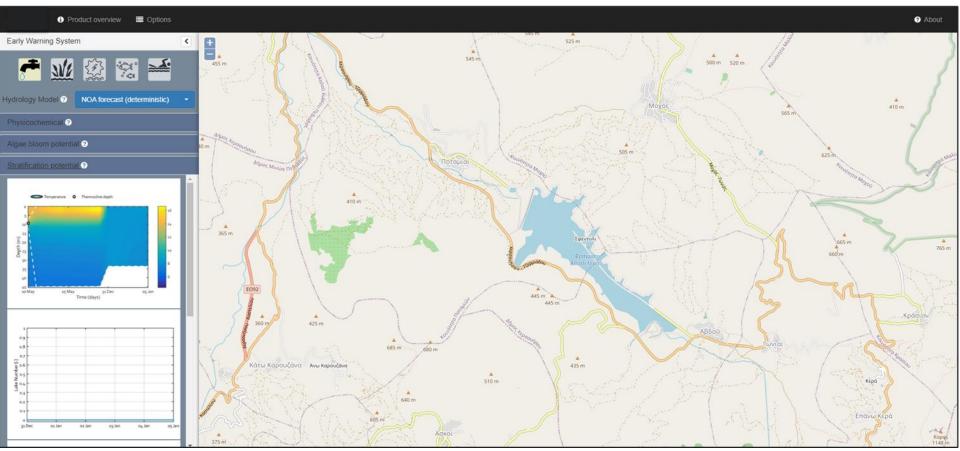
· Quantile regression forests

Assessment of predictor importance

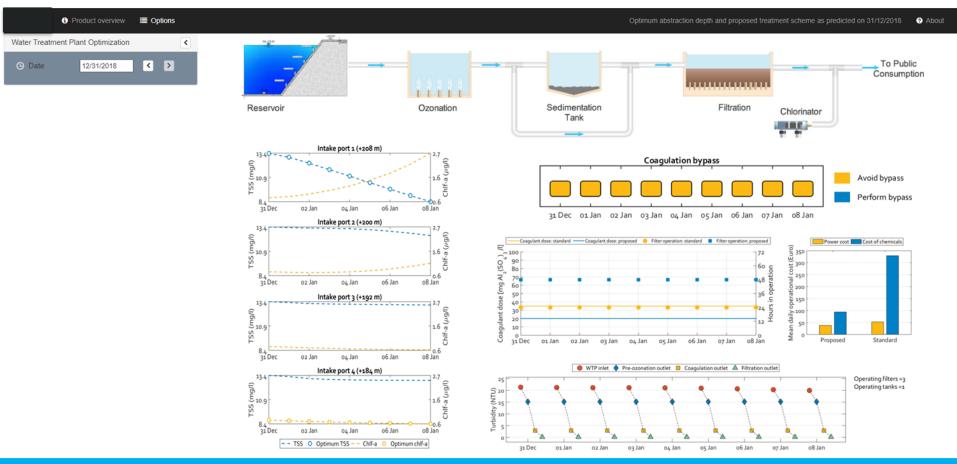
Uncover interaction effects among



FROM SCIENCE TO OPERATIONAL SERVICES FOR THE WATER INDUSTRY


Water Quality Forecasts as a Service

FROM SCIENCE TO OPERATIONAL SERVICES FOR THE WATER INDUSTRY


Forecasts based Early Warning System for Algae Bloom

FROM SCIENCE TO OPERATIONAL SERVICES FOR THE WATER INDUSTRY

Water Abstraction Optimization for a Potable Water Treatment Plant based on forecasted Water Quality

MEET OUR TEAM

EMVIS S.A.

National Research Council of Italy

Swedish Meteorological and Hydrological Institute

EOMAP GmbH & Co.KG

International Water Association Burgundy School of Business

Ente Acque della Sardegna

US Environmental Protection Agency

Commonwealth Scientific and Industrial Research Organization

Melbourne Water

SatDek Pty Ltd

European

Commission

The project has received funding from the European Union's Horizon H2020 Research and Innovation Programme under Grant Agreement No 870497

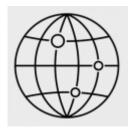
Case study: EO in practice, the point of view of a water utility

MARIA ANTONIETTA DESSENA

ENAS - REGIONAL WATER BODIES

CASE STUDIES

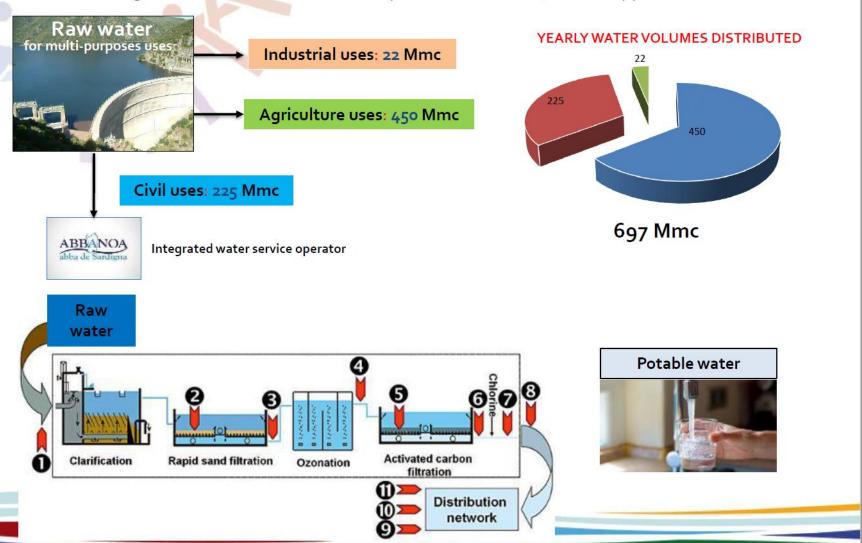
Lake Harsha *Ohio, US*


Melbourne Western Treatment Plant *Victoria, AU*

LAKE MULARGIA SARDINIA, IT

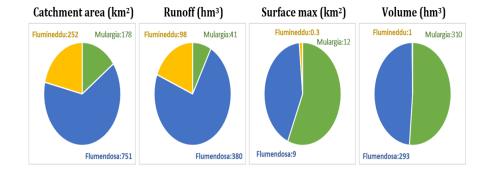
Mulargia Reservoir is one of the PrimeWater case studies.

Here, research is taking place to explore multiplatform optical data for assessing water quality.


In Mulargia Reservoir, PrimeWater aims to assess the predictability of algae blooms – in terms of timing, extent, and intensity – for time scales spanning from several days to a few weeks ahead employing both process-based and data-driven models. PrimeWater will further evaluate the limits of those modelling approaches in terms of their sources of uncertainty and forecast horizons.

ENAS - Ente Acque della Sardegna: The Mission

According to the allocations, yearly established by the Regional Sardinian Water Authority for each reservoir, ENAS supplies **raw water**:

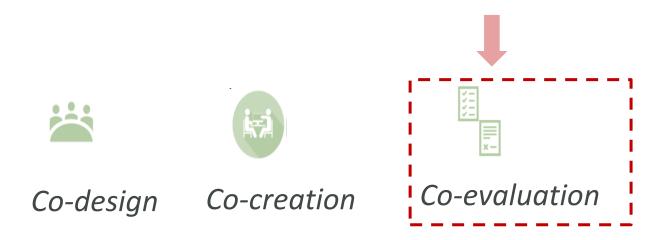

THE RATIONAL FOR WATER BLENDING AMONG INTERCONNECTED RESERVOIRS

Problem definition

31

Dam height	99 m
Reservoir area	12 km²
Capacity	310 hm³
Upstream catchment area	178 km²
Rainfall	600 mm/year

- 1) Inflow from river basin of Mulargia
- 2) Flumendosa tunnel transferring water from Flumendosa reservoir to Mulargia
- 3) Pumping station Basso Flumendosa transferring water to the entrance of Mulargia
- 4) Ecological outflow from Mulargia reservoir to downstream water body 5) Water abstraction for civil, agriculture and industrial uses
- 6) Automated monitoring station inside Mulargia
- 7) Automated monitoring station inside Flumendosa


- Mulargia & Flumendosa formulate a complex water system
- Bringing water from Flumendosa is not only a quantitative matter but also a way to improve water quality
- Currently water blending is performed empirically based on weather forecasting
- The correlation between action (blending water from an alternative source) and result (improving water quality) is not always obvious
- 9-days forecasting capacity of PrimeWater allows for preventive actions at early stage

INTRODUCTION

Defining the framework for evaluating the skill of the produced forecasts and warnings:

The end-users perspective

Operational services definition for the Mulargia Reservoir

Problem

Solution

Impact

EO based water quality monitoring services

Reservoirs monitoring is time and resource intensive.

A single daily measure of physical, chemical, and biological contaminants

Previous day detection of source water contamination and ability to evaluate effectiveness of protective strategies

Operational Forecasting services for Water Quality in Rivers & Lakes

Responding to contamination events may be more costly than being prepared to avoid contamination events.

Up to 10-days in advance forecast of daily measures of physical, chemical, and biological contaminants and indices in a 3D grid

Early warning of impeding contamination and ability to evaluate effectiveness of protective strategies

Water Blending among interconnected reservoirs

Managing interconnected reservoirs under Water Quality stress is a complex and multi-parametric problem which requires advanced tools.

Dynamically assess the effectiveness of various water transfer scenarios in terms of volume, timing and duration 10 d in advance through scenario-based forecasting tool for WQ characteristics and schedule proactively of water transfers between reservoirs.

Mitigate the evolution of algae blooms

QUESTIONS OF USERS

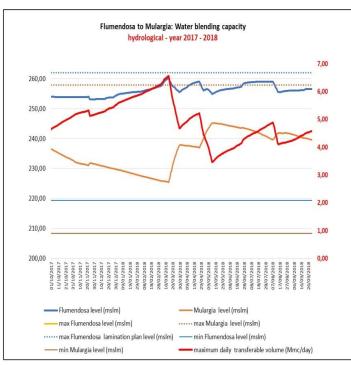
As a user, I would like to know the skill of forecasts for <parameter or indicator> during <time period of interest>
at <point of interest> because it is critical for <operation/action>.

- Parameters: Define the most critical forecasted parameter (or indicator) that you would like to validate against your in-situ measurements.
- When: Is there a specific time period when a skillful forecast would make difference for your operations (e.g. during a specific season or month, throughout the year).
- Where: Validation will be performed against monitoring datasets collected by the floating station in Mulargia. Is there a specific point of interest (e.g. at surface, at a specific depth) or is the entire water column that matters?

Main forecasted parameters and indicators to assess HABs

	Parameter	unit	Time resolution	Spatial resolution
Upstream catchments	River discharges entering reservoir	[m3/d]	Daily time step- 10 days ahead	Catchment level
	Nitrogen, Phosphorus and Sediment loads entering reservoir	[kg/d]		
	Temperature of water entering reservoir	[°C]		
Reservoir	Chlorophyll (green algae, cyanobacteria, diatoms) inside the reservoir	[mg/L]	Hourly time step - 1 week ahead	100x100 m ² grid cell, 15 vertical layers (aggregation in larger areas available)
	Suspended sediments inside reservoir	[mg/L]		
	Nitrogen (NO3, NH4), Phosphorus (PO4) inside reservoir	[mg/L]		
	Water temperatures inside reservoir	[°C]		
	Dissolved oxygen	[mg/L]		
	Velocities	[vectors]		

Define specific indicators for targeted concerns or operations


Indicator Type	Category	Assessment based on
Intensification of algae bloom	Increase /No change or Rate of increase	Localized change in chlorophyll levels
Evenness of phytoplankton community	According to Pielou's evenness index	Calculated based on forecasted values of a different member community
Reservoir stratification tendency	Depth of the thermocline, Lake number, Wedderburn number Schmidt stability	Capture change of circulation pattern in the reservoir

THE RATIONAL FOR WATER BLENDING AMONG INTERCONNECTED RESERVOIRS

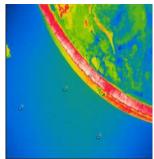
Problem definition

- Flumendosa Mulargia water blending is dependent on the amount of water that can be transferred;
- 2. The transferable water volume is related to the Flumendosa and Mulargia water level.
- 3. Maximum transferable water volume: 6.5 Mmc/day

Drought season:

Water blending scenarios can be established all over the hydrological year

Standard season:

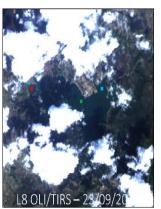

Water blending scenarios can be established in the following periods: October-December and July-September

Water blending scenarios should be congruent to the current management of the reservoirs

ANALYSIS - MULTIPLATFORM EXPERIMENTS: 22-25 SEPT 2020 (BY CNR-IREA/EO ELABORATIONS)

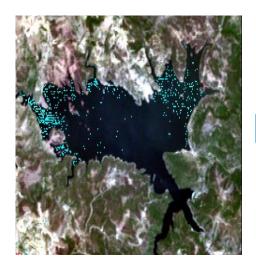
Airborne Hyperspectral acquisition

UAV Multispectral and Thermal acquisition

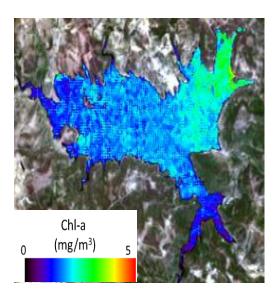


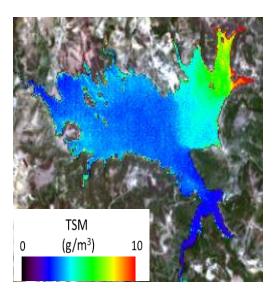
In situ Field campaign

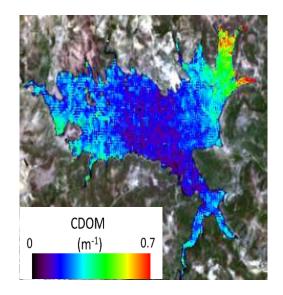
Different Satellite acquisition



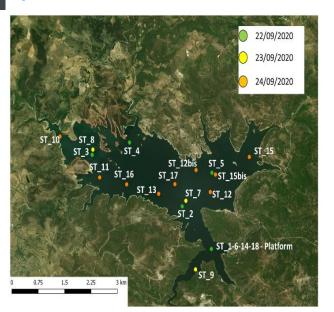
RESULTS - HYPERSPECTRAL ON MULARGIA RESERVOIR (BY CNR-IREA/EO ELABORATIONS)

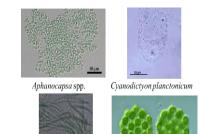


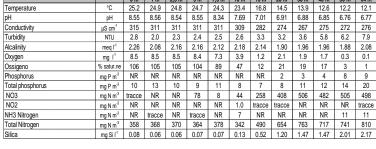

PRISMA (8/7/2020)

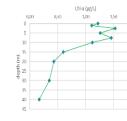


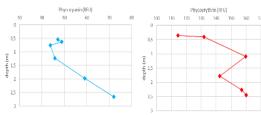
Pixel with spectral signature characterized by cyanobacteria with phycocyanin pigment



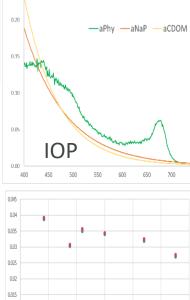


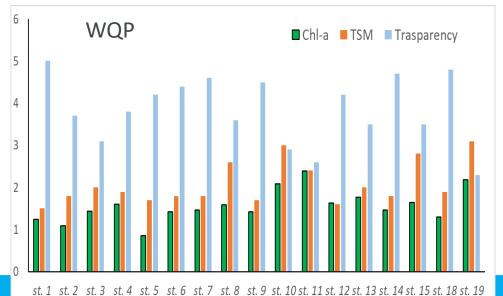

RESULTS - IN SITU DATA 22-25 SEPT 2020 (BY CNR-IREA/EO ELABORATIONS)

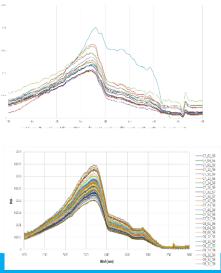




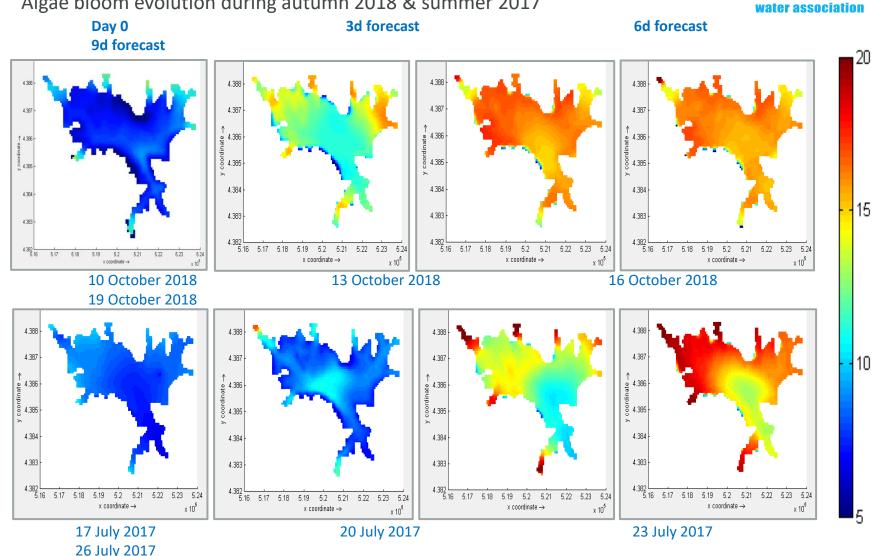
Coelastrum reticulatum






Planktolyngbya limnetica

Reflectance

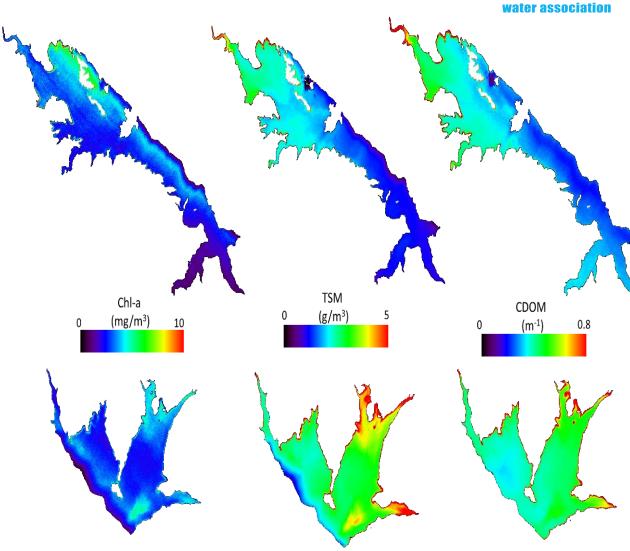

ELABORATIONS - THE RATIONAL FOR WATER BLENDING AMONG INTERCONNECTED RESERVOIRS

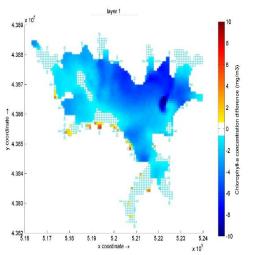
Using PrimeWater for optimizing water quality in Mulargia Reservoir

Chlorophyll concentration µg/|

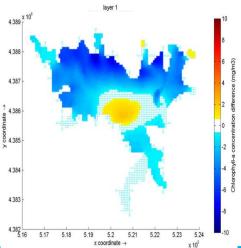
Algae bloom evolution during autumn 2018 & summer 2017

Could these algae blooms have been avoided?


AIRBORNE RESULTS (BY CNR-IREA/EO **ELABORATIONS)**


WATER BLENDING AMONG INTERCONNECTED RESERVOIRS

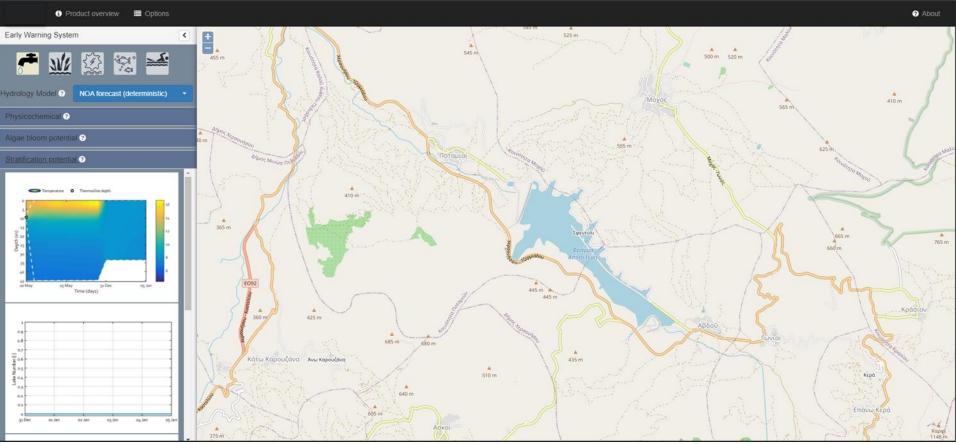
Preventing the evolution of an algae bloom by combining different sources of water



Investigate if transferring 40 hm3 of water from Flumendosa can reduce chl-a concentrations

Differences in chlorophyll a concentrations between the scenario of Flumendosa contribution and the reference scenario at day +9 (19 Oct 2018) for the top layer.

Differences in chlorophyll a concentrations between the scenario of Flumendosa contribution and the reference scenario at day +9 (26 Jul 2017) for the top layer.


- Water elevation in Mulargia increases by almost 3 meters
- \Box Additional water from Flumendosa reduces chl-a values by up to 10 µg/L.
- ☐ Higher reduction is observed near the area of the Flumendosa tunnel entrance and the north part of the reservoir.
- Smaller differences are observed in the reservoir perimeter due to nutrient fluxes from upstream rivers
- ☐ Water elevation in Mulargia increases by almost 3 meters
- Chlorophyll reduction is also dictated by the hydrodynamic conditions
- Additional water from Flumendosa reduces chl-a values by up to 6 μ g/L in the north part but increases chl-a in the center of the reservoir.

Why did the reservoir not respond in the same manner?

- ☐ the different water quality characteristics of Flumendosa at that time of the year
- the hydrodynamic pattern which breaks the thermal stratification and releases nutrients to the upper layers.

OPERATIONAL SERVICE OFFERS TO END USER BY PRIMEWATER PLATFORM

THANK YOU

Grazie

Use of EO in practice for water management

BLAKE SCHAEFFER
US EPA

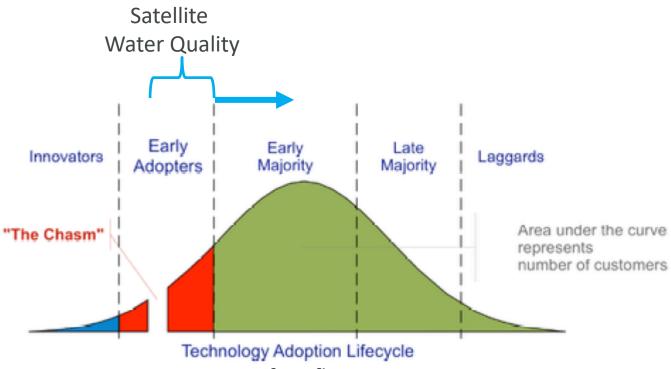
IWA & SATELLITE WATER QUALITY

IWA 2019 Strategic Plan

- "scarcity into abundance."
- "utilities...improve efficiency, enhanced services and credibility."
- "universally applicable, easily accessible, and locally adaptable."

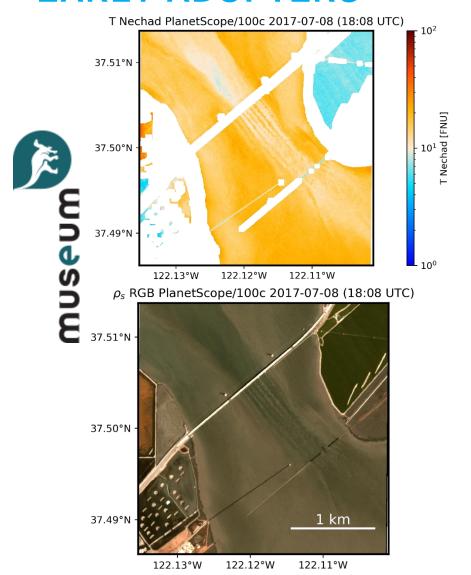
Satellite Water Quality Concepts

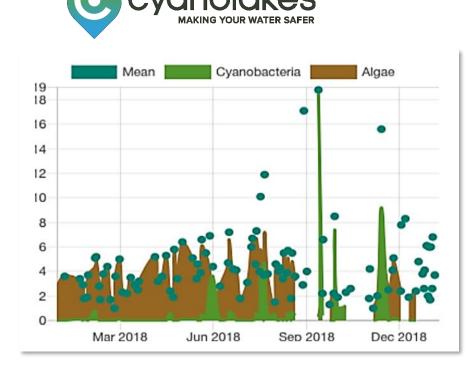
- Discrete temperature measures >11,000 U.S. lakes...satellite temperature >170,000 lakes (Schaeffer et al., 2018).
- Annual potential avoided costs increasing the availability of remotely sensed chlorophyll-a values...range between \$5.7 and \$316 million (Papenfus et al., 2020).
- Better targeting of sampling and providing additional spatial and temporal context (Schaeffer et al., 2013).


IWA & SATELLITE WATER QUALITY

IWA "...bridging the chasm between research and practice..."

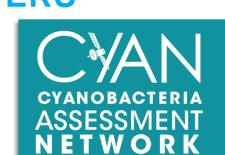
Satellite Water Quality Monitoring




Source: strategiesforinfluence.com

G. Moore "Crossing the Chasm"

EARLY ADOPTERS



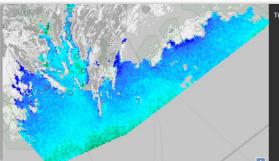
Source: mark@cyanolakes.com cyanolakes.com

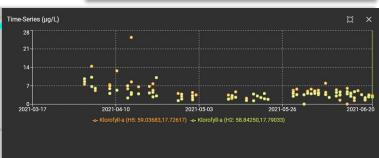
Source: qvanhellemont@naturalsciences.be

EARLY ADOPTERS

Source: schaeffer.blake@epa.gov

UCMR 4 qualitative response


Don't know (n = 8) No (n = 76)


Yes (n = 8)

epa.gov/cyanoproject

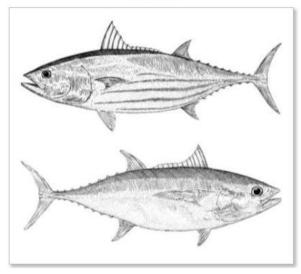
 $\times 10^{6}$

Brockmann Consult Remote is getting closer



Source: kerstin.stelzer@brockmann-consult.de cyanoalert.com

EARLY ADOPTERS



Source: MSmith2@csir.co.za

ocims.gov.za/hab/app/

Annual Stock Assessment and Fishery Evaluation Report for U.S. Pacific Island Pelagic Fisheries Ecosystem Plan 2019

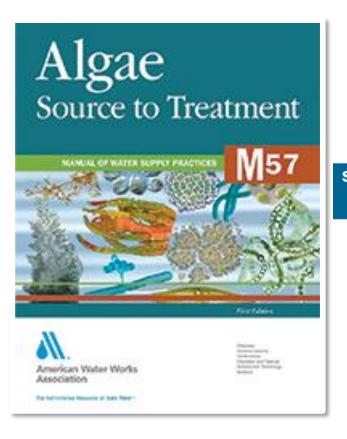
Source: ryan.rykaczewski@noaa.gov

EARLY MAJORITY

IWA's "Sustainable Development Goals (SDGs) for water require a rapid and transformational new approach based on inclusive governance."

MONITORING FOR SDG INDICATOR 14.1.1: Coastal Eutrophication

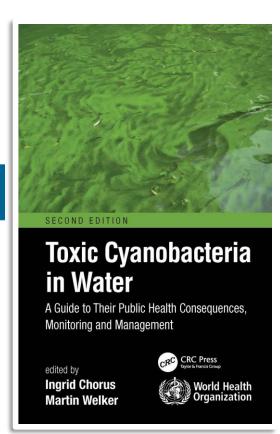
Source: chlorophyll-esrioceans.hub.arcgis.com/


Freshwater Ecosystems Explorer

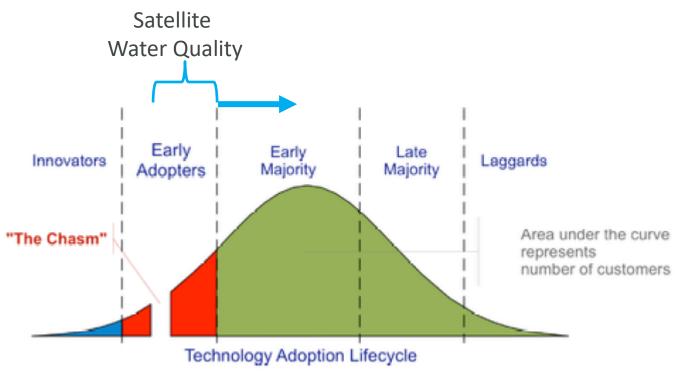
Leverage the best available science to track, monitor, and improve the health of freshwater ecosystems.

sdg661.app/home

EARLY MAJORITY



Strategies for Preventing and Managing Harmful Cyanobacterial Blooms (HCBs)


AVAILABLE NOW!

IWA & SATELLITE WATER QUALITY

Source: strategiesforinfluence.com G. Moore "Crossing the Chasm"

Q&A DISCUSSION

Dr Erin Urquhart
PACE Applications
Coordinator at
NASA GSFC,
USA

Steven Greb
Researcher at
University of
WisconsinMadison,
Director of
GEO AquaWatch,
USA

Apostolos Tzimas,
Managing
Director at EMVIS
Consultant
Engineers,
PrimeWater
project leader,
Greece

Maria Dessena,
Geologist at
ENAS,
Italy
Environmental
Protection
Agency (EPA),
USA

UPCOMING! EARTH OBSERVATION FOR WATER MANAGEMENT GROUP

The IWA Digital Water Programme will soon launch the Earth Observation for Water Management Group.

MAIN OBJECTIVES

- Provide a platform for different end-users to share approaches on the application of EO, in situ data sets, citizens science, modelling and data assimilation techniques for water management.
- Enable linkages between cross cutting scientific communities and end-users to attain a better understanding of EO.
- Identify gaps and how these can be addressed in the understanding and use of EO technology in managing water.

More info will be shared in the post-webinar email!

UPCOMING EVENTS

GET-TOGETHER

Next Generation Water Action:

Turning Challenges into Opportunities

Wednesday, 28 July 2021 13:00 BST

https://iwa-network.org/learn/ywp-get-together-next-generation-water-action-turning-challenges-into-opportunities/

Join our network of water professionals!

IWA brings professionals from many disciplines together to accelerate the science, innovation and practice that can make a difference in addressing water challenges.

Use code WEB21RECRUIT for a 20% discount off new membership.

Join before 31 December 2021 at: www.iwa-connect.org

Learn more about upcoming webinars at

http://www.iwa-network.org/iwa-learn/